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Abstract. We study the propagation of an electromagnetic wave with a high intensity in a
ferromagnetic medium, in a way analogous to the mathematical theory of nonlinear geometric
optics. We find that the evolution of the modulation of a quasi-monochromatic plane wave is
described by a nonlinear transport equation. In the simplest case, we retrieve a result described
by other models: the main nonlinear effect is a phase modulation proportional to both the time
and the square of the amplitude of the wave.

But the most interesting feature is that the rapidly oscillating wave generates slowly varying
waves that belong to soliton propagation modes, and that the latter react on the former by a
phase factor. Two regimes occur, depending whether the slowly varying waves travel slower
or faster than the modulation of the rapidly oscillating wave. An analogue to the boom of a
supersonic airplane can thus be observed in the phase modulation of the incident wave.

1. Introduction

Various studies have already been devoted to the nonlinear modulation of a quasi-
monochromatic electromagnetic wave in a ferromagnetic medium [1–3]. These theoretical
studies, that have been confirmed experimentally [4–6], are all developed in the framework
of a weakly nonlinear approximation that leads to an asymptotic model governed by the
nonlinear Schr̈odinger (NLS) equation, or by a perturbed version of it. This model is
obtained by use of a multiscale expansion method [7, 8]. It is well known that the result of
such an expansion depends on the chosen scales. Physically, the question is: what does a
‘weak’ nonlinearity mean? The present work studies a case where the nonlinearity is weak,
but not so weak as in the quoted papers.

The multiscale expansion scheme that leads to the NLS equation consists of three main
steps: the first is the dispersion relation, the second a transport equation, the third the
nonlinear evolution equation (the NLS equation in most cases). In all the mentioned cases,
the transport equation is linear, and expresses only the fact that the wave envelope propagates
at the group velocity, without deformation at this order of the perturbation scheme.

Recent mathematical works have emphasized nonlinear transport equations, defining
the so-called nonlinear geometrical optics approximation. Such equations were derived
formally in [9] from a general nonlinear PDE. A general mathematical theory and a proof
of the convergence of the asymptotic model have been developed in [10]. A mathematical
study of a model describing the propagation of an intense laser pulse in a nonlinear medium
[11], investigated both a nonlinear Schrödinger model and a nonlinear transport equation.
The latter was obtained for sources at a higher power level than the former.

Precisely, in the physical frame studied in [11], we have the following features: let us
call ε the perturbative parameter of the multiscale expansion. It represents the ratio of a
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length typical of the wave modulation to the wavelength. Then the nonlinear Schrödinger
model is obtained when the electric field of the wave has an order of magnitude ofε

times an electric field characteristic of the medium. The nonlinear transport equation of the
nonlinear geometrical optics approximation is obtained when the ratio between these two
fields is close to

√
ε.

Following these ideas, we investigate in this paper the nonlinear modulation of a quasi-
monochromatic wave in a saturated ferromagnetic dielectric, with a wave-field intensity
much larger than that considered in previous works [1–3]. A nonlinear transport equation,
which describes a nonlinear geometrical optics regime is derived. As in [11], the equation
can be explicitly solved. We can thus study some physical properties of the wave; only the
phase is affected. In the simple case of a plane wave, propagating along the direction of the
external field, the modulation of the phase is proportional to the square of the amplitude of
the wave. The same model also describes the interaction between the quasi-monochromatic
wave and slowly varying solitary waves. The fact that these latter waves can propagate in
such a medium is already known. This interaction only occurs if the wave is modulated in
the transverse direction.

The system that describes the interaction is derived in section 2, and reduced in order to
make the structure of the solitary wave and of the interaction apparent in section 3. It may
have two behaviours, depending on whether the rapidly oscillating wave travels slower or
faster (group velocity) than the solitary waves. The discussion is achieved in section 4 in
the particular case where the propagation is parallel to the external magnetic field. We give
the solution of the interaction system for arbitrary initial data, and a physical interpretation
for some special cases. It is found that the phase modulation of the wave that we study
in section 5 may present a singularity analogous to the boom of a supersonic airplane for
sound waves.

2. The model and the multiscale expansion

As in our previous papers [2, 3], we use a classical model [1, 12, 13] that describes
electromagnetic wave propagation in an isotropic, infinite ferromagnetic medium, with a
linear behaviour with regard to the electric field. This model neglects inhomogeneous
exchange interaction and damping. For lower wave intensities, in the linear framework,
many properties of the wave propagation can be described without taking into account
these effects [12, 14]. The inhomogeneous exchange term is important mainly when the
wavelength is no longer very large in regard to the interatomic distances or in thin films [15].
We consider here typically microwaves frequencies, for which it can bea priori neglected.
The present author has studied the influence of damping on the nonlinear modulation that
is described by the NLS model, still in a ferromagnetic medium [16]. We show that
the inhomogeneous exchange interaction, as soon as it can be treated as a perturbation,
has no effect on the nonlinear modulation, at the scales where the formation of NLS
solitons occurs. The appearance of a nonlinear effect of the inhomogeneous exchange for
higher intensities seems unlikely. However, interactions between the microwave frequency
under consideration and spin waves might occur. The effect of such interactions on the
ferromagnetic resonance absorption is studied in [17]. This kind of treatment cannot
be incorporated in the frame of this paper. Fortunately, these effects can be avoided
experimentally [4].

Under these assumptions, the magnetization densityM and the magnetic fieldH must
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satisfy the equations:

−∇(∇ · H)+1H = 1

c2
∂2
t (H + M ) (1)

∂tM = −µ0δ̂M ∧ H (2)

wherec = 1/
√
ε̂µ0 is the speed of light based on the dielectric constantε̂ of the medium,

µ0 the magnetic permeability in vacuum andδ̂ the gyromagnetic ratio (∂tu denotes the
partial derivative of the functionu with respect to the variablet). We first rescalet , H,
M into ct , (δ̂µ0/c)H, (δ̂µ0/c)M , and write the system (1), (2) in the form:

−∇(∇ · H)+1H = ∂2
t (H + M ) (3)

∂tM = −M ∧ H . (4)

Now we introduce a multiscale expansion corresponding to the following assumptions:

(i) The medium is magnetized to saturation by an external magnetic field.
(ii) A quasi-monochromatic wave propagates along thex-axis with a slowly varying

envelope.
(iii) The amplitude of this wave is small in regard to the exterior field, but large compared

to the amplitude of the wave studied in [3].

ThusM is first expanded in a series of harmonics of the fundamental eiφ , with

φ = kx − ωt (5)

M =
∑
n∈Z

Mneinφ (6)

and we have the reality conditionM n∗ = M−n (asterisk denotes complex conjugation).
Then each amplitudeM n is expanded in a power series of a small parameterε, that measures
the ratio between the saturation magnetization and the amplitude of the wave:

Mn = Mn
1 + εMn

0 + ε2Mn
2 + · · · . (7)

H is expanded in the same way asM , and eachMn
k , Hn

k is assumed to be a function of
the slow variablesξ = (ξ, η, ζ ) andτ defined by

∂t = ε2∂τ (8)

∇x = ε2∇ξ. (9)

The term of order zero is assumed to be uniform and constant, and represents the field
created inside the sample by the external field. We will call it the exterior field, although
demagnetizing factors should be taken into account. It reads:

M0
0 = m H0

0 = αm. (10)

The y- andz-axes are chosen so that

m =
(mx
mt
0

)
=

(m cosϕ
m sinϕ

0

)
. (11)

The particular caseϕ = 0, where the propagation direction is parallel to the exterior field,
is much simpler than the general case. Most quantities can be computed explicitly. We will
take advantage of this feature for going further in the discussion, in this particular case. It
will be referred to as the longitudinal case thereafter.

Among the terms of orderε, only the coefficientsM1
1 andH1

1 of the fundamental (and
their complex conjugate) will be non-zero, corresponding to a quasi-monochromatic wave.
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All other terms are assumed to vanish at infinity. Thus, the parameterε is such that the
typical lengthL of the studied phenomenon has an order of magnitude of 1/ε2 times the
wavelengthλ. The ratio of the amplitude of the wave divided by the magnitude of the
exterior field is proportional toε = √

λ/L, instead ofλ/L in the case studied in [1, 3].
The order-by-order resolution of the perturbative scheme is described in appendix 1.

The terms of orderε1 of the fundamental are given by

H1
1 = h1

1g(ξ, τ ) (12)

M1
1 = m1

1g(ξ, τ ) (13)

g is an arbitrary function of the stretched variables(ξ, τ ) defined by (8), (9), andh1
1 and

m1
1 are constant polarization vectors, given in appendix 1 (equations (94) and (95)). We

find also thatω andk must satisfy the dispersion relation (studied in [13, 3]):

µ2m2
x + γµ(1 + α)m2

t = γ 2ω2 (14)

where we have put

γ = 1 − k2

ω2
andµ = 1 + αγ. (15)

The solvability condition of equation (4) at orderε3 gives the following equation:

iA∂τg + iDg + B0g|g|2 + F(H0
2,M

0
2 )g = 0. (16)

A and B0 are real constants,Dg is a first-order spatial partial derivative ofg, and
F(H0

2,M
0
2 ) is a linear function of the fieldsH0

2 and M0
2 (equations (111) to (114)).

Equation (16) is a nonlinear transport equation for the amplitudeg. It contains the self-
interaction termB0g|g|2, but also the termF(H0

2,M
0
2 )g. This latter term corresponds to

an interaction between the rapid oscillating wave and the long solitary waves, which can
be described by the quantitiesH0

2 andM0
2 . The main difficulty of the present work is to

describe these solitary waves correctly.
In order to find their evolution equations (the equations that relate the fieldsM0

2 to
H0

2), we consider the conditions deduced from equations (3). They are trivial at orderε2,
thus the sought equations are found at orderε6. They are:

∂2
τ (H

0,x
2 +M

0,x
2 ) = −∂ξ (∂ηH 0,y

2 + ∂ζH
0,z
2 )+ (∂2

η + ∂2
ζ )H

0,x
2 (17)

and the relations deduced from (17) by circular permutation of the axes(x, y, z). We use
the notation:

H
0,x
2 = 8

H
0,y
2 = 9

H
0,z
2 = 4 (18)

and, solving the perturbative scheme up to orderε4, we find conditions that enable us to
eliminate the fieldM0

2 from expression (114) ofF(H0
2,M

0
2 ) in equation (16), and from

equations (17). Finally we get the system:

iA∂τg + iDg + Bg|g|2 + Cg8+Dg9 + Eg

∫ τ

−∞
D|g|2 = 0 (19)(

∂2
η + ∂2

ζ − α + sin2 ϕ

α
∂2
τ

)
8 = − sinϕ cosϕ

α
∂2
τ 9 + ∂ξ (∂η9 + ∂ζ4)+ a∂2

τ |g|2

+γmt
m2

∂τD|g|2 (20)
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∂2
ξ + ∂2

ζ − α + cos2 ϕ

α
∂2
τ

)
9 = − sinϕ cosϕ

α
∂2
τ 8+ ∂η(∂ξ8+ ∂ζ4)+ b∂2

τ |g|2

+γmt
m2

∂τD|g|2 (21)(
∂2
ξ + ∂2

η − α + 1

α
∂2
τ

)
4 = ∂ζ (∂ξ8+ ∂η9) (22)

(the constants are given in appendix 1). We have put the nonlinear transport equation (16)
for g into the more convenient form (19). Equations (20)–(22) describe the evolution of
long solitary waves in the medium, supported by the quantityH2

0 = (8,9,4), and the
generation of such waves by the rapidly oscillating wave with amplitude|g|. In the next
section, we will reduce these equations, to make the various interacting modes appear.

3. The solution of the interaction system

Equation (19) can be solved by separating the phase and the amplitude ofg (see appendix 2).
The solution reads:

g = reiθ (23)

wherer andθ are given by

r = r(ξ′) = r(ξ ′, η′, ζ ′) (24)

θ(ξ′, τ ′) = 3r2(ξ′)τ ′ + C

A

∫ τ ′

τ1

8(ξ′, τ̂ ) dτ̂ + D

A

∫ τ ′

τ2

9(ξ′, τ̂ ) dτ̂ . (25)

(The ‘integration constants’τ1 and τ2 are a priori arbitrary functions ofξ′, and3 =
B/A− E.) We use the change of variables:

ξ ′ = ξ − vξ τ

η′ = η − vητ

ζ ′ = ζ

τ ′ = τ (26)

with

vξ = (b + 1)u

b + 1 + γµu2
(27)

vη = γµ2mxmtu

0(b + 1 + γµu2)
. (28)

We have put

u = ω

k
0 = γ 2ω2 b = µ2m2

x

γ 2ω2
. (29)

Thusr is a constant in the frame moving at the velocity(vξ , vη, 0).
Differentiating the dispersion relation (14), we can compute the group velocity dω/dk

of the wave, in thex direction. We find that

dω

dk
= vξ . (30)
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In the same way, we can compute the dispersion relation for the phaseφ̃ = (kx+ ly+pz−
ωt), with an arbitrary propagation direction. Differentiating, then settingl andm equal to
zero, we find that

∂ω

∂l

∣∣∣∣
l=0,p=0

= vη and
∂ω

∂p

∣∣∣∣
l=0,p=0

= 0. (31)

Thus the group velocity of the wave under consideration has a non-zero transverse
componentvη, in the y direction. Because of the external field, the medium is no longer
isotropic; that is why the group velocity is not parallel to the phase velocity. The amplitude
propagates at the group velocity, without any deformation due to nonlinearity. As in [11],
the nonlinearity affects only the phaseθ .

Let us consider equation (25). A phase shift proportional to both the intensityr2(ξ′) of
the wave and the timeτ ′ appears, as in [11].

This is a well-known effect, that is also described by the NLS model. In [3], we obtained
the equation:

iA0∂τg + B0∂
2
ξ g + C0g|g|2 +D0λg = 0 (32)

with:

λ = lim
ξ→−∞

|g|2. (33)

Equation (32) describes the same quantityg as in the present paper, but, as we have already
noted, with other space, time and amplitude scales. Its solution reads:

g(ξ, τ ) = ψ(ξ, τ )exp

(
i
D0

A0
λτ

)
(34)

whereψ is a solution of the NLS equation obtained by settingD0 = 0 in equation (32).
The phase factor(D0/A0)λτ in equation (34) is analogous to the factor3r2(ξ′)τ ′ in
equation (25). The quantityr2(ξ′), which appears in equation (25), is the square amplitude
at the considered point, whileλ, which appears in equation (32), is the same quantity at the
infinity of space. This difference is justified by the scalings. Indeed, if we callε the ratio of
the amplitude of the wave to the external field in both the NLS model and the present one,
equation (32) is obtained at a space scale of order 1/ε, and equation (25) at a space scale
of order 1/ε2, which is infinity in comparison with the former. In fact, the phase factor
(D0/A0)λτ does not coincide exactly with the factor3r2(ξ′)τ ′, but rather, at least in the
longitudinal case, with the term31r

2(ξ′)τ ′ of equations (82) and (83). Such a phase factor
has been computed in another way in our study of the nonlinear Faraday effect in the same
medium [18]. In the longitudinal case, the present factor coincides with the phase factor
proportional toρ2

1 in equations (29ab) of [18] (we take the limit of3 asω → +∞, and
take into account the fact thatg1,2 = mxg, according to equation (27a) of [18]).

The unexpected feature in expression (25) of the modulation of the wave is the other
phase factors that describe an action of the terms8 and9 on the phase. Such an interaction
does not appear in the usual nonlinear geometrical optics [11]. The difference is partly due
to the fact that we do not use exactly the same expansion as it was used there (note that this
implies that the mathematical result of [10] does not apply to our work). We think that the
present expansion should not lead to a closed system in the case of the laser propagation
model studied in [11], and thus that no interaction analogous to the present one should
appear there.

We will see that the quantities8 and9 can describe long solitary waves. The equations
that give their evolution are reduced first by use of a rotation around thez (or ζ ) axis. We



Electromagnetic wave in a ferromagnet 2811

use the coordinates(X, Y ) such that theX-axis lines up with the exterior field.(81,82, 4)

are the components of the fieldH0
2 in the rotated frame. Second the system is decoupled

into three equations by using the following transform:

91 = ∂Y82 + ∂ζ4

92 = ∂ζ82 − ∂Y4 (35)

82 and4 can be recovered from91 and92 by solving the Poisson equations:

(∂2
Y + ∂2

ζ )82 = ∂Y91 + ∂ζ92

(∂2
Y + ∂2

ζ )4 = ∂ζ91 − ∂Y92. (36)

(82 and4 are assumed to vanish at infinity.) The equations that govern the evolution of
91, 92, 81 are linear, and the fields can thus be written as the sum of terms corresponding
to ‘free waves’ and terms describing a wave that accompanies the modulation of the high
frequency. We introduce functionsχ1 and χ2 (defined by equations (150) and (151) in
appendix 2). They verify the equations:

(V 2
0 ∂

2
X + ∂2

Y + ∂2
ζ − ∂2

τ )χ1 = 0 (37)

(V 2
0 (∂

2
X + ∂2

Y + ∂2
ζ )− ∂2

τ )χ2 = 0. (38)

We have put

V0 =
√

α

1 + α
. (39)

Equation (38) corresponds to a wave propagation at velocityV0. It is well known thatV0

is a propagation velocity for solitary waves in this medium [19, 20]. Equation (37) also
corresponds to a wave propagation, but with an anisotropic velocity. The velocity is 1 (in
our units, it is the light velocity based on the dielectric constant of the medium) in theY

andζ directions, andV0 along theX direction, which is the direction of the exterior field.
Now we can give an explicit expression for the part of the fieldH0

2 that corresponds
to this homogeneous solution. In the(X, Y, ζ ) frame:

H0
2 =

( 0
∂ζ

−∂Y

)
χ2 +

 ∂2
Y + ∂2

ζ

−V 2
0 ∂X∂Y

−V 2
0 ∂X∂ζ

χ1 + H0,+
2 . (40)

HereH0,+
2 is a particular solution(8+, 9+, 4+) of the complete system (with a non-zero

value ofr). In an analogous way, we obtain

M0
2 = 1

α

( 0
∂ζ

−∂Y

)
χ2 − 1

1 + α

( 0
∂Y
∂ζ

)
∂Xχ1 + M0,+

2 (41)

M0,+
2 is obviously the particular solution of the complete system that corresponds toH0,+

2 .
Let us now seek solutions to equations (37), (38) in the form:

χj (X, Y, ζ, τ ) = χ0
j (X cosϕ0 + Y sinϕ0 − Vjτ). (42)

Such a solution describes a plane wave propagating in the direction that makes an angleϕ0

with theX-axis in the(XY) plane.
For χ1, we find that

V1 =
√
α + sin2 ϕ0

1 + α
(43)
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and the corresponding component ofH0
2 reads:

H0
2,(χ1)

=
( (1 + α) sinϕ0

−α cosϕ0

0

)
sinϕ0

1 + α
χ0′′

1 (X cosϕ0 + Y sinϕ0 − V1τ). (44)

H0
2,(χ1)

stays in the plane defined by the external field and the propagation direction; for
very large values ofα, it is transverse to the propagation direction. Forχ2, we find that
V2 = V0, and the corresponding component ofH0

2 reads:

H0
2,(χ2)

=
( 0

0
− sinϕ0

)
χ0′

2 (X cosϕ0 + Y sinϕ0 − V0τ) (45)

H0
2,(χ2)

is perpendicular to both the external field and the propagation direction. Recalling
that H0

2 is a quantity of orderε2, it may be considered to be an infinitesimal variation
of the fieldH0

0 in a precession move of this vector around the propagation direction. All
these features allow us to recognize two propagation modes of long solitary waves, whose
nonlinear behaviour has been studied in [19] and [20].χ1 corresponds to what is called in
[20] the KdV mode, andχ2 to Nakata’s mode.

Let us now deal with the particular solution of the complete equations. In the frame
moving at the group velocity(vξ , vη, 0), the square amplituder2 of the wave depends only
on the spatial coordinatesξ′ = (ξ ′, η′, ζ ′). Thus we search a particular solution8+

1 of
the equation that governs the evolution of81 (appendix 2, equation (146)), function of the
variableξ′ only. 8+

1 must verify:

[(V 2
0 − v2

X)∂
2
X − 2vXvY ∂X∂Y + (1 − v2

Y )∂
2
Y + ∂2

ζ ]8+
1 = R (46)

R is some functional ofr2, given in appendix 2 (equation (158)), and(vX, vY ) are the
components of the group velocity in the(X, Y ) frame. In order to reduce equation (46), let
us consider the trinomeP(U) = (V 2

0 −v2
X)U

2 −2vXvYU+ (1−v2
Y ). P(U) is the difference

of two squares when the reduced discriminant

1′ = v2
X − V 2

0 + V 2
0 v

2
Y (47)

is positive. When1′ is negative,P(U) is the sum of two squares, affected by the sign of
the quantity(V 2

0 − v2
X). But if 1′ < 0, then(V 2

0 − v2
X) > 0. Thus only two cases may

occur:

If 1′ < 0, then equation (46) can be reduced, by means of a linear change of coordinates
(X, Y ) 7→ (X1, X2), to the Poisson equation:

(∂2
ζ + ∂2

X1
+ ∂2

X2
)8+

1 = R. (48)

If 1′ > 0, then equation (46) can be reduced, in the same manner, to the wave equation:

(∂2
ζ + ∂2

X1
− ∂2

X2
)8+

1 = R. (49)

In the longitudinal case,vX = v andvY = 0, thus

1′ = v2 − V 2
0 (50)

and the condition on the sign of1′ is easy to interpret (see below). In the general case,
this condition (v > V0 or v < V0) is distorted by the existence of the transverse component
of the group velocityvY . Unfortunately, the explicit expression of1′ is very complicated
and the discussion cannot be achieved algebraically in the general case.
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4. The longitudinal case

We study in this section the special case where the exterior field is parallel to the propagation
direction. Equations (19)–(22) reduce to

iA∂τg + iK∂ξg + Bg|g|2 + Cg8+ EKg

∫ τ

−∞
∂ξ |g|2 = 0 (51)

(∂2
η + ∂2

ζ − ∂2
τ )8 = ∂ξ (∂η9 + ∂ζ4)+ a∂2

τ |g|2 − K

m(α + δν)
∂τ ∂ξ |g|2 (52)(

∂2
ξ + ∂2

ζ − 1

V 2
0

∂2
τ

)
9 = ∂η(∂ξφ + ∂ζ4) (53)(

∂2
ξ + ∂2

η − 1

V 2
0

∂2
τ

)
4 = ∂ζ (∂ξφ + ∂η9). (54)

(The coefficients are given in appendix 3, equations (160)–(164).)
The reduction of the system is analogous to the general case, but much simpler.

Equation (24) is still valid, with the change of coordinates:

ξ ′ = ξ − vτ

η′ = η

ζ ′ = ζ

τ ′ = τ. (55)

Owing to the symmetry of rotation of the system around thex-axis, the group velocity is
now parallel to the propagation direction, and reads:

v = 2(α + δν)3/2(α + δν + 1)1/2

2(α + δν)(α + δν + 1)− δν
. (56)

(ν = ω/m andδ = ±1.) Equation (25) becomes

θ(ξ′, τ ′) = 3r2(ξ′)τ ′ + C

A

∫ τ ′

τ1

8(ξ′, τ̂ ) dτ̂ . (57)

The term that depends on9 disappears. The equation that describes the evolution of
8 = 81 (analogous to equation (146) in appendix 2) is obtained. It reads:

(V 2
0 ∂

2
ξ + ∂2

η + ∂2
ζ − ∂2

τ )8 = P∂2
τ r

2. (58)

(The constants are given in appendix 3, equations (165), (166), (170).)
Let us now seek for a particular solution8+ of equation (58). Owing to theτ

dependency ofr, we can choose8+ as a function ofξ′ only and equation (58) becomes

((V 2
0 − v2)∂2

ξ ′ + ∂2
η′ + ∂2

ζ ′)8
+ = Pv2∂2

ξ ′r
2. (59)

Equation (59) is either of the form (48) or (49) depending on the sign of the quantity
(V 2

0 − v2).
This condition has a very simple physical interpretation: the rapidly oscillating wave

with amplituder emits slowly varying waves of the mode described by8 (which we call
the KdV mode). These slowly varying waves propagate at their own velocityV0. There
are two possibilities then: the amplituder of the rapidly oscillating wave can propagate
either faster or slower thanV0. If it propagates slower(v < V0), then the wave is emitted
in all directions: this case is described by a Poisson equation in the frame moving with
the fast oscillating wave. If it propagates faster(v > V0), it outruns the emitted slowly
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varying wave, and if the input wave is localized, the emitted wave will concentrate on a
cone, like the boom of an airplane with a supersonic speed. This latter case is described by
equation (59) when it is a wave equation.

The sign of(V 2
0 − v2) can be explicitly determined here. For a wave with positive

helicity (δ = +1 with the notation of appendix 3),V 2
0 −v2 < 0 and equation (59) is a wave

equation, and for a wave with negative helicity(δ = −1), two behaviours may appear: for
ω > ω0, whereω0 is some threshold frequency,V 2

0 − v2 < 0, and equation (59) is also a
wave equation, but forω < ω0, V 2

0 − v2 > 0, and equation (59) is a Poisson equation. An
asymptotic value ofω0 can be computed for strong exterior fields (α tends to+∞):

ω0 = m

(
2α + 1

2
+ 1

8α
+O

(
1

α2

))
. (60)

In both cases(V 2
0 − v2) > 0 or < 0, equation (59) can be solved explicitly by means

of quadratures. Let

d =
√

|V 2
0 − v2| (61)

and

ξ1 = ξ

d
ξ1 = (ξ1, η, ζ ). (62)

Consider first the case(V 2
0 − v2) > 0. Equation (59) writes

(∂2
ξ1

+ ∂2
η + ∂2

ζ )8
+ = ρ(ξ1, η, ζ ) (63)

with

ρ = Pv2∂2
ξ r

2. (64)

Solution of equation (63) is well known, it reads

8+(ξ1) =
∫ ∫ ∫

R3

ρ(u)du

‖ξ − u‖ . (65)

Formulae (64), (65) solve the equation for any source functionr2. Let us consider the
following particular case, for which the expression of8 is especially simple, and that has
an interesting physical meaning:

r2 = aH(ξ ′)δ(η)δ(ζ ) (66)

a is a positive constant,H(ξ ′) is the Heaviside function (H(ξ ′) = 0 if ξ ′ < 0, H(ξ ′) = 1
if ξ ′ > 0), and δ(η), δ(ζ ) are Dirac’sδ-distributions relative to the variablesη and ζ .
Expression (66) represents the top front of a long pulse, with a very small transverse
extension (or considered from a distance very large in regard to its transverse dimensions).

Then

8+ = aPv2ξ ′

[ξ ′2 + d2(η2 + ζ 2)]3/2
(67)

8+ has an expression analogous to the expression of the electrostatic potential created by
an electrostatic dipole put at the origin. The unit length in the transverse plane is modified
by the coefficient 1/d. 8+ is proportional to the maximal valuea of the intensityr2 of the
rapidly oscillating wave, as expected.

In the case where(V 2
0 − v2) < 0, equation (59) can be written as

(−∂2
ξ1

+ ∂2
η + ∂2

ζ )8
+ = ρ(ξ1, η, ζ ). (68)
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This is the wave equation in 2+ 1 dimensions. Its properties are rather different from those
of the wave equation in 3+1 or 1+1 dimensions, thus we find useful to recall its resolution.
We define the Fourier transform in the(η, ζ ) variables by

f (ξ1, η, ζ ) =
∫ ∫

f̃ (ξ1, l, p)exp(2iπ(lη + pζ)) dl dp (69)

f̃ (ξ1, l, p) =
∫ ∫

f (ξ1, η, ζ )exp(−2iπ(lη + pζ)) dη dζ. (70)

Equation (68) gives

∂2
ξ1
8̃+ = −4π2(l2 + p2)8̃− ρ̃ (71)

which is easily solved:

8̃+ = i

2κ

[
eiκξ1

∫ ξ1

ξa1

dξ̂1e−iκξ̂1ρ̃(ξ̂1, l, p)− e−iκξ1

∫ ξ1

ξb1

dξ̂1eiκξ̂1ρ̃(ξ̂1, l, p)

]
(72)

where

κ = 2π
√
l2 + p2 (73)

andξa1 andξa2 are arbitrary real constants. The inverse Fourier transform (70) of8̃+ gives
8+.

We want to give an example of this solution for a particular value ofr2. But8+ cannot
be computed explicitly for the particular case given by (66). Let us consider

r2 = aH(ξ ′)δ(η) (74)

which corresponds to the top front of a long pulse of a wave that has been emitted through
a long and narrow slot. Then

8+ = −aPv2

2d2

[
δ

(
η + ξ ′

d

)
+ δ

(
η − ξ ′

d

)]
. (75)

The emitted wave8+ is concentrated on the two half-planesε = ±ξ ′/d, instead of being
finite everywhere and regular, as in the caseV 2

0 > v2. The slowly varying waves emitted at
various instants arrive all at the same time on these half-planes, and thus a very high peak
is created. This effect is analogous to the formation of the boom of an airplane flying at
a supersonic speed, in the case of sound waves. Although the explicit computation is not
possible, we think that, in the case where the top front of the wave is punctual, the emitted
wave will concentrate on a cone, as in the case of a supersonic boom.

Let us now have a look to the particular solution obtained when there is no transversal
modulation of the incident wave, that is, whenr depends only onξ ′. Then equation (58)
has the very simple solution:

8+ = Pv2

V 2
0 − v2

r2. (76)

We have

Pv2

V 2
0 − v2

= −Jξ . (77)

Thus, using equation (145), we obtain

9+
1 ≡ 0. (78)
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If we assume that there is no incident solitary wave, we obtain finally

H0
2 = −M0

2 = −Jξ r2(ξ ′)
( 1

0
0

)
. (79)

This particular case had to be mentioned owing to its remarkable simplicity.

5. Effects on the phase of the rapidly oscillating wave

The solitary waves supported byH0
2 = (8,9,4) react on the phaseθ of the rapidly

oscillating wave, through the term(C/A)
∫ τ ′

τ1
8(ξ′, τ̂ ) dτ̂ of equation (57) in the longitudinal

case, and also through the term(D/A)
∫ τ ′

τ2
9(ξ′, τ̂ ) dτ̂ of equation (25) in the general case.

8 and9 can always be written as the sum of two terms

8 = 80 +8+ 9 = 90 +9+ (80)

where80 and90 are ‘free’ long solitary waves, and8+, 9+ constant in the frame moving
at the group velocity of the rapidly oscillating wave. The phaseθ reads thus:

θ =
[
3r2(ξ′)+ C

A
8+(ξ′)+ D

A
9+(ξ′)

]
τ ′ + C

A

∫ τ ′

τ1

80(ξ′, τ̂ ) dτ̂

+D
A

∫ τ ′

τ2

90(ξ′, τ̂ ) dτ̂ + θ0(ξ
′) (81)

(θ0(ξ
′) is an integration constant). In the absence of incident solitary waves,θ is thus

proportional to the timeτ ′, in the frame that moves at the group velocity. We restrict
ourselves now to the longitudinal case, and assume that80 = 0. Let us first consider the
case of a plane wave, that is, the particular case, mentioned at the end of the previous
section, where the envelope amplituder varies only as a function of the single variable
ξ ′ = ξ − vτ . Then the phaseθ is easy to compute. Equation (59) has the very simple
solution (76). Thus, if no incident solitary wave does exist, the phaseθ is obtained as

θ = 31r
2τ ′ (82)

with

31 = −2mν3(1 + α + δν)

(α + δν)4[2(α + δν)(α + δν + 1)− δν]
. (83)

(The notation is that of appendix 3.) In this particular case, the nonlinear effect is simply
a phase factor proportional to the time and the intensity of the wave. As already stated, it
has already been described in the NLS approximation [3]; the coefficient31 has the same
value as the ratioD0/A0 in equation (34).

For an amplitude modulation depending on the transverse coordinates(η, ζ ), we have,
still in the longitudinal case, and in the absence of incident solitary waves:

θ =
[
3r2(ξ′)+ C

A
8+(ξ′)

]
τ ′ + θ0(ξ

′) (84)

where8+ is one of the two solutions given by equation (65) or (70), (72). Let us consider
the particular examples studied in the previous section. In the case whereV0 > v, we
consider the particular amplitude given by equation (66). Then,

θ = 3r2(ξ′)τ ′ +21
ξ ′τ ′

[ξ ′2 + d2(η2 + ζ 2)]3/2
+ θ0(ξ

′) (85)
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with

21 = CaPv2

A
. (86)

Recall thatr2(ξ′) has here the expression (66), and that

d =
√

|V 2
0 − v2|. (87)

The part of the phaseθ that comes from the interaction is smooth. In the case where the
fast oscillating wave travels faster than a solitary wave(V0 > v), we consider the particular
amplitude given by equation (74). Then

θ = 3r2(ξ′)τ ′ +22

[
δ

(
η + ξ ′

d

)
+ δ

(
η − ξ ′

d

)]
τ ′ + θ0(ξ

′) (88)

with

22 = −CaPv2

2Ad2
. (89)

The term that comes from the interaction is now singular. It behaves as a supersonic boom
in the case of sound waves. One can expect that, for more realistic values of the amplitude
r(ξ′), this singularity should still exist.

The next question is whether this effect will be observable. The first objection is that
outside the support ofr, which is a straight line in the space (or a plane in the second case),
θ has no meaning, and so does expression (85). But we can easily avoid this drawback,
by adding to the quantityr2 of equation (66) a term that does not depend onξ ′, and that
does not vanish at the point where we intend to measure the phaseθ . This will physically
represent a rapid and localized increase of a wave, that is being emitted with a constant
amplitude for a long time. Then, because of the operator∂2

ξ in equation (64), and of the
linearity of the equations, the expression (85), or (88) ofθ is still valid.

Then, we may have two behaviours for the phase of the wave, depending whether
V0 > v or v > V0. If the wave is polarized with a negative helicity, these two cases
are obtained depending on whetherω > ω0 or not, whereω0 is a known function of
α = ‖H0

0‖/‖M0
0‖, increasing (for largeα at least) (see equations (173) and (60)). Thus,

increasing the external field for a given frequency, we would observe a transition between
a singular low-field regime(ω0 < ω), and a smooth high-field regime(ω0 > ω). This
transition should appear if we are able to measure the difference between the phases of the
wave at two different points of the same wave front (defined by the equality of the linear
part of the phases). We hope that it will be possible by use of interference techniques.

6. Conclusion

In a way analogous to the mathematical theory of nonlinear geometric optics, the propagation
of an electromagnetic wave with a high intensity in a ferromagnetic medium is described
by a nonlinear transport equation. This happens for an intensity scale much larger than
the scale where the formation of NLS solitons occurs, for the same space scale. But it
may also happen for an unchanged intensity scale, if the space scale under consideration is
much larger. In the simplest case, which is the case of a plane wave propagating along the
direction of the exterior field, and modulated only in this direction, it gives rise to a phase
modulation proportional to both the time and the square of the amplitude of the wave. This
effect has already been described by other models.
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More interesting is the fact that the rapidly oscillating wave generates slowly varying
waves. These waves belong to already known propagation modes, that can, under certain
circumstances, support KdV or mKdV solitons. Two regimes occur, depending on whether
the slowly varying waves travel slower or faster than the modulation of the rapidly oscillating
wave. An analogue to the boom of a supersonic airplane can thus be created in these
propagation modes. Furthermore, the slowly varying waves react on the phase of the fast
oscillating wave. This is at the origin of a part of the phase modulation mentioned above. In
the general case, the phase of the fast oscillating wave reflects quite precisely the amplitude
of the slowly varying waves. In particular, the boom in the slowly varying wave can be
observed in the phase modulation of the rapidly oscillating wave.

Appendix 1. Derivation of the transport equation

In this appendix, we give the details of the order-by-order resolution of the perturbative
scheme of section 2. Equations (3), (4) read, after the expansion in a Fourier series:

(−n2ω2 − 2inω∂t + ∂2
t )(H

n,x +Mn,x) = −(ink + ∂x)(∂yH
n,y + ∂zH

n,z)+ (∂2
y + ∂2

z )H
n,x

(90)

(−n2ω2 − 2inω∂t + ∂2
t )(H

n,y +Mn,y) = −∂y((ink + ∂x)H
n,x + ∂zH

n,z)

+(−n2k2 + 2ink∂x + ∂2
x + ∂2

z )H
n,y (91)

(−n2ω2 − 2inω∂t + ∂2
t )(H

n,z +Mn,z) = −∂z((ink + ∂x)H
n,x + ∂yH

n,y)

+(−n2k2 + 2ink∂x + ∂2
x + ∂2

y )H
n,z (92)

(−inω + ∂t )M
n = −

∑
p+q=n

Mp ∧ Hq . (93)

At order ε0, it is found thatH0
0 and M0

0 must be collinear. We obtain equations (10).
Recall that we assume thatα andm are constant, and thatHn

0 = 0 andMn
0 = 0 for every

non-zeron.
At order ε1, we find the ‘linear’ solution (12), (13) with

h1
1 =

( iγµmt
−iµmx
γω

)
(94)

m1
1 =

( −iγµmt
iγµmx
−γ 2ω

)
. (95)

(γ andω are defined by equation (15).)
We imposeM n

1 = 0, Hn
1 = 0, if |n| 6= 1. In particular,M0

1 = 0, H0
1 = 0. This term

would represent an incident solitary wave with a large space scale, and an amplitude of the
same order of magnitude as the rapidly oscillating wave. We assume that there is no such
wave; we retain the possibility to investigate the interaction between the rapidly oscillating
waves and long solitary waves, but with a much smaller amplitude.

At order ε2, we find that all termsMn
2 , Hn

2 , are zero for|n| > 3, and thatM2
2 and

H2
2 are non-zero and defined in a unique way. They can be computed explicitly, but their

expressions are not useful for our purposes. The fundamental harmonic can be expressed
in the same way as at orderε:

H1
2 = h1

1f M1
2 = m1

1f (96)

wheref is an arbitrary function of(ξ, τ ). Equation (93) gives forn = 0, at this order:

H
0,z
2 = αM

0,z
2 (97)
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mx(H
0,y
2 − αM

0,y
2 )−mt(H

0,x
2 − αM

0,x
2 ) = −2γ (1 − γ )µ2mxmt |g|2. (98)

As stated above, equations (90)–(92) are trivial at orderε2, thus the equations that relate
M0

2 to H0
2 must be sought at orderε6. These are equations (17).

At order ε3, for n = 1, equations (90)–(92) give

M1
3 =

 −H 1,x
3

−γH 1,y
3

−γH 1,z
3

 + P (99)

with the vectorP given by

P x = k

ω2
(µmx∂η + iγω∂ζ )g (100)

P y = −µ
ω2

[2(1 − γ )ωmx∂τ + k(2mx∂ξ + γmt∂η)]g (101)

P z = −iγ

ω2
[2(1 − γ )ω2∂τ + k(2ω∂ξ − iµmt∂ζ )]g. (102)

Equation (93) gives, at this order,

−iωM1
3 + m ∧ (H1

3 − αM1
3 ) = −S (103)

with

S =
∑
p+q=1

(M
p

1 ∧ H
q

2 + M
p

2 ∧ H
q

1 )+ ∂τM
1
1 . (104)

After computation,

S = s′g + s′′g|g|2 + m1
1∂τg (105)

with

s′ =
 γω(M

0,y
2 + γH

0,y
2 )+ iµ2mx

α
H

0,z
2

−γω(M0,x
2 + γH

0,x
2 )+ iγµmt

α
(1 + α)H

0,z
2

−iµmx(M
0,x
2 + γH

0,x
2 )− iγµmt(M

0,y
2 +H

0,y
2 )

 (106)

s′′ = −(1 − γ )2µ2m2
t

2ω2

( 0
γωµmx

i(γ 2ω2 + 2µ2m2
x)

)
(107)

andm1
1 is given by equation (95). Equation (103) can be written:

LH1
3 = iωP + αm ∧ P − S (108)

with

LH = −iω

( −Hx

−γHy

−γHz

)
+ m ∧

( (1 + α)Hx

µHy

µHz

)
=

( iω 0 µmt
0 iγω −µmx

−(1 + α)mt µmx iγω

)
H .

(109)

The solvability condition of equation (108) is

det

[( iγω
0

−(1 + α)mt

)
,

( 0
iγω
µmx

)
, iωP + αm ∧ P − S

]
= 0. (110)
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It is equation (16). The coefficients of this equation are given by the following formulae:

A = 2

µ
[(1 − γ )µ2m2

x + [γµ+ (1 − γ )]γ 2ω2] (111)

D = 2k

ωµ
[(µ2m2

x + γ 2ω2)∂ξ + γµ2mxmt∂η] (112)

B0 = −γ (1 − γ )2µ2m2
t

2ω
(γ 2ω2 + 3µ2m2

x) (113)

F(H0
2,M

0
2 ) = −{γ 2ωmt [(1 + α + µ)M

0,y
2 + (γ (1 + α)+ µ)H

0,y
2 ]

+2γωµmx(M
0,x
2 + γH

0,x
2 )}. (114)

We now intend to eliminate the components ofM0
2 from equation (16), in order to

describe the corresponding solitary waves conveniently.
First we compute the solutionH1

3 to system (108), and the corresponding magnetization
M1

3 . Then we write the solvability condition for equation (93), forn = 0, at orderε4; it
reads

m ∧ (H0
4 − αM0

4 ) = −Q (115)

with

Q = ∂τM
0
2 +

∑
p+q=0

(M
p

1 ∧ H
q

3 + M
p

2 ∧ H
q

2 + M
p

3 ∧ H
q

1 ). (116)

The solvability condition is:

m · Q = 0. (117)

Among various terms, the quantitym · Q contains a term proportional toH 0,z
2 |g|2 and the

term

m ·
∑
p+q=0

(M
p

2 ∧ H
q

2 ) = H
0,z
2

α
[−mx(H 0,y

2 − αM
0,y
2 )+mt(H

0,x
2 − αM

0,x
2 )]. (118)

Using equation (98), this expression reduces to a term proportional toH
0,z
2 |g|2 that cancels

the previous one.
Then equation (117) reduces to

mx∂τM
0,x
2 +mt∂τM

0,y
2 = γ (1 − γ )[4µm2

x + γm2
t (2(1 + α)− µ)]∂τ |g|2

+2kγ

ω
[2µm2

x + γ (1 + α)m2
t ]∂ξ |g|2 + 2γ 2kµ

ω
mxmt∂η|g|2. (119)

After integration, equations (119) and (98) yield a 2×2 system forM0,x
2 andM0,y

2 , that
can be solved in terms ofg, H 0,x

2 , H 0,y
2 .

Using the notation (18) forH 0,s
2 (s = x, y), and the expressions forM0,s

2 (s = x, y) just
computed in equation (114), we computeF(H0

2,M
0
2 ):

F(H0
2,M

0
2 ) = C8+D9 + F0|g|2 + E

∫ τ

−∞
D|g|2. (120)

We have:

C = −γωmx
αm2

(2αγµm2
x + [2µ2 − γ (1 + α + µ)]m2

t ) (121)

D = −γωmt
αm2

(αγ [γ (1 + α)+ µ]m2
t + 2µ[(1 + α)γ − 1]m2

x) (122)
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F0 = −γ 2(1 − γ )ω

αm2
[γ (1 + α + µ)m2

t ([4αµ+ 2µ2]m2
x + αγ [2(1 + α)− µ]m2

t )

+2µm2
x(4αµm

2
x + [(2(1 + α)− µ)αγ − 2µ2]m2

t )] (123)

E = −γ 2ω

m2
[γ (1 + α + µ)m2

t + 2µm2
x ] (124)

andD given by (112). We also use the expressions forM
0,x
2 andM0,y

2 in order to reduce
equations (17). Finally the system (19)–(22) is obtained. The constants involved in these
equations are as follows:A is given by equation (111),D by equation (112),C by
equation (121),D by equation (122),E by equation (124), and

B = B0 + F0. (125)

B0 is given by (113),F0 by (123), and

a = γ (1 − γ )mx

αm2
(4αµm2

x + [2(1 + α)αγ − 3µ2 + µ]m2
t ) (126)

b = γ (1 − γ )mt

αm2
([4αµ+ 2µ2]m2

x + αγ [2(1 + α)− µ]m2
t ). (127)

This completes the derivation of the interaction system.

Appendix 2. Reduction of the interaction system

In this appendix, the interaction system (19)–(22) is reduced to explicit expressions
(equations (40), (41), etc) and the evolution equation (46). The functiong is decomposed
into amplitude and phase as in equation (23).r andθ are real functions to be determined.
Equation (19) reduces to

A∂τ r + Dr = 0 (128)

A∂τ θ + Dθ = Br2 + C8+D9 + E

∫ τ

−∞
Dr2. (129)

Equation (128) shows that the amplituder of the wave propagates without deformation;
and equation (129) can be integrated to give the expression of the phaseθ of the rapidly
oscillating wave: we see that it is affected by the square amplituder2 of the wave itself,
but also by interaction with slowly varying solitary waves described by8 and9. Using
the change of variables (26), equation (128) reduces to

∂τ ′r = 0 (130)

that is equation (24). Using equation (130), equation (129) reduces to

∂τ ′θ = 3r2 + C

A
8+ D

A
9 (131)

with

3 = B

A
− E. (132)

Thus we obtain equation (25). Second we have to reduce equations (20)–(22), that give the
evolution of8 and9, in order for the structure of the waves described by(8,9,4) to
become noticeable. Using equation (128), they can be written as(
∂2
η + ∂2

ζ − α + sin2 ϕ

α
∂2
τ

)
8 = − sinϕ cosϕ

α
∂2
τ 9 + ∂ξ (∂η9 + ∂ζ4)+ Jξ∂

2
τ r

2 (133)(
∂2
ξ + ∂2

ζ − α + cos2 ϕ

α
∂2
τ

)
9 = − sinϕ cosϕ

α
∂2
τ 8+ ∂η(∂ξ8+ ∂ζ4)+ Jη∂

2
τ r

2 (134)
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with

Jξ = a − Aγmx

m2
(135)

Jη = b − Aγmt

m2
. (136)

The following rotation enables us to reduce the system: the coordinates(X, Y ) are defined
by

∂X = cosϕ∂ξ + sinϕ∂η
∂Y = − sinϕ∂ξ + cosϕ∂η (137)

and the fields81 and82 by

8 = cosϕ81 − sinϕ82

9 = sinϕ81 + cosϕ82. (138)

In this coordinate frame, the system becomes:

(∂2
Y + ∂2

ζ − ∂2
τ )81 = ∂X(∂Y82 + ∂ζ4)+ JX∂

2
τ r

2 (139)(
∂2
X + ∂2

ζ − α + 1

α
∂2
τ

)
82 = ∂Y (∂X81 + ∂ζ4)+ JY ∂

2
τ r

2 (140)(
∂2
X + ∂2

Y − α + 1

α
∂2
τ

)
4 = ∂ζ (∂X81 + ∂Y82). (141)

The constantsJX, JY are defined by

JX = cosϕJξ + sinϕJη
JY = − sinϕJξ + cosϕJη. (142)

The system (139)–(141) is decoupled by use of the transform (35) in the following way:
deriving equation (140) with respect toζ , and equation (141) with respect toY , and
subtracting, we get the evolution equation for92:(

∂2
X + ∂2

Y + ∂2
ζ − 1 + α

α
∂2
τ

)
92 = JY ∂ζ ∂

2
τ r

2. (143)

Then, deriving equation (140) with respect toY and equation (141) with respect toζ , and
adding up, we get(

∂2
X − 1 + α

α
∂2
τ

)
91 = (∂2

Y + ∂2
ζ )∂X81 + JY ∂Y ∂

2
τ r

2. (144)

We derive equation (139) with respect toX, and then add to equation (144), to obtain, after
integration:

91 = −α
1 + α

[∂X81 + (JX∂X + JY ∂Y )r
2]. (145)

Using this relation in equation (144), we get the evolution equation for81:(
α

1 + α
∂2
X + ∂2

Y + ∂2
ζ − ∂2

τ

)
81 =

( −α
1 + α

∂X[JX∂X + JY ∂Y ] + JX∂
2
τ

)
r2. (146)

The system (133), (134), (22), by means of the rotation of the coordinate axes (137), (138),
and of the differential transform (35), has been reduced to two differential equations, one for
81 only (equation (146)), and one for92 only (equation (143)), and an explicit expression
for 91 (equation (145)).
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These equations are linear in81, 91, 92, thus is it worth considering the homogeneous
equations associated with them (obtained by settingr = 0 in equations (143), (145), (146)).
They read:

(V 2
0 ∂

2
X + ∂2

Y + ∂2
ζ − ∂2

τ )8
0
1 = 0 (147)

90
1 = −V 2

0 ∂X8
0
1 (148)

(V 2
0 (∂

2
X + ∂2

Y + ∂2
ζ )− ∂2

τ )9
0
2 = 0. (149)

We call 80
1, 90

1, 90
2 the part functions81, 91, 92 which is the solution of these

homogeneous equations, andV0 is given by equation (39). Equations (147)–(149) enable
us to give expressions forH0

2 andM0
2 , in the following way: the functionsχj , j = 1, 2,

are defined by

(∂2
Y + ∂2

ζ )χ1 = 80
1 (150)

(∂2
Y + ∂2

ζ )χ2 = 90
2 (151)

and theχj vanish at infinity. The evolution equations forχ1 and χ2 are the same as
for 80

1 and90
2 (equations (37) and (38)). Then equations (36) can be integrated to give

expressions (40) and (41) ofH0
2 andM0

2 as functions ofχ1 andχ2.
Now we seek a particular solution of the complete equations. As written in section 3,

we can search a particular solution8+ of equation (146), function ofξ′ only. If 8+
1 is so,

the general solution of equation (146) is

81(ξ
′, τ ′) = 8+

1 (ξ
′)+80

1(ξ
′, τ ′) (152)

where80
1 is a solution of equation (147), that is, an incident solitary wave of the above-

mentioned type. As8+
1 is a function ofξ′ = (ξ − vξ τ, η − vητ, ζ ),

∂τ8
+
1 = −(vξ ∂ξ + vη∂η)8

+
1 . (153)

In the rotated frame(XYζ), we have:

vξ∂ξ + vη∂η = vX∂X + vY ∂Y (154)

with

vX = cosϕvξ + sinϕvη
vY = − sinϕvξ + cosϕvη. (155)

Computation gives

vX = vξmx

m(b + 1)(1 + α)
[1 + α + µ+ bα(1 − γ )] (156)

vY = −vξmt
m(b + 1)

[1 + b(1 − γ )]. (157)

Thus equation (146) becomes equation (46) for8+
1 . R given by

R = [JX(v
2
X − V 2

0 )∂
2
X + (2JXvXvY − JYV

2
0 )∂X∂Y + JXv

2
Y ∂

2
Y ]r2. (158)

Appendix 3. An explicit computation in the longitudinal case

In this appendix, we study the special case where the exterior field is parallel to the
propagation direction. We give some details of the calculus, and the explicit expression
of the coefficients. The dispersion relation (14) can be solved, and we obtain

γ = −1

α + δν
(159)
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with ν = ω/m and δ = ±1. δ = 1(−1) corresponds to a wave with positive (negative)
helicity. Thus the computation can be achieved explicitly. The evolution of the waves is
governed by the system (51)–(54), where the coefficients are given by

A = 2m2δν

(α + δν)3
[2(α + δν)(α + δν + 1)− δν] (160)

B = −8m3ν3(α + δν + 1)

(α + δν)5
(161)

C = mE = −2m2δν2

(α + δν)3
(162)

K = 4m2δν(α + δν + 1)1/2

(α + δν)3/2
(163)

a = −4mδν(α + δν + 1)

(α + δν)3
. (164)

The reduction of the system is analogous to the general case. We obtain first equations (24)
and (57), where the constants3 andC/A are given by

3 = −2mν3

(α + δν)3[2(α + δν)(α + δν + 1)− δν]
(165)

C

A
= −ν

2(α + δν)(α + δν + 1)− δν
. (166)

Equations (20), (21) may be written in a much simpler way as in the previous section, and
the rotation (137) is trivial. The coefficientJY = Jη is zero. The transform (35) reads:

91 = ∂η9 + ∂ζ4

92 = ∂ζ9 − ∂η4. (167)

Equation (146), which gives91 in terms of81 = 8, is still valid with

JY = Jη = 0 (168)

and

JX = Jξ = −2mν2

(α + δν)4
. (169)

Equation (143) for92 becomes the equation for a free wave propagation at velocityV0.
Then we obtain equation (58), withP given by

P = −mδν3[4(α + δν)(α + δν + 1)(2α + δν)− αδν]

2(1 + α)(α + δν)7(α + δν + 1)
. (170)

A particular solution8+ of equation (58) verifies equation (59); it depends on the sign
of the quantity(V 2

0 − v2). We have

V 2
0 − v2 = −δνN

Q
(171)

with

Q = (1 + α)[2w2 + w + α]2 (172)

and

N = 4w3 + 4(1 + α)w2 + 3αw + α2. (173)
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We use the parameterw = α+ δν, that takes every real value. Study of the functionN(w)
shows that, for everyα > 0,N changes its sign only once, for a negative valuew0 = α−ν0.
The sign of(V 2

0 − v2) is deduced from this result; and discussed in section 4 of the paper.
The threshold frequencyω0 is defined by

ω0 = mν0 = m(α − w0) (174)

wherew0 is the unique real solution of the equationN(w) = 0.
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